5.5 Notes

Monday, June 1, 2015 9:49 AM

5.5 - Z-Scores

- Z-Score
- A standardized value that indicates the number of standard deviations of data value above or below the mean.
- $z=\frac{x-\mu}{\sigma}$
- Standard Normal Distribution
- A normal distribution that has a mean of zero and a standard deviation of one
- You will need a z-score table or else your life will be miserable.

5.5 Examples

IQ Tests are sometimes used to measure intelligence at a particular time. IQ scores are normally distributed and have a mean of 100 and standard deviation of 15 . If a person scores 119 on an IQ test, how does this score compare with the scores of the general population?

1. Look at a normal curve. Determine the IQ scores for 1,2 , and 3 standard deviations away from the mean. Decide where 119 fits into these deviations. This serves as a good estimate for you.

$$
\begin{aligned}
& \mu+\theta=100+15=15 \\
& \mu+2 \theta=100+2(15)=130 \\
& u+3 \theta=100+3(15)=145
\end{aligned}
$$

2. Use the z-score formula to determine the exact z-score.

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
& =\frac{119-100}{15}=1.27
\end{aligned}
$$

3. Use your z-score table to find the area under the curve.

$$
1.270 .8980
$$

4. Convert this to a percentage.

$$
0.8980=89.8 \%
$$

Athletes should replace their shoes before their shoes lose their ability to absorb shock.

Running shoes lose their shock-absorption after a mean distance of 640 km , with a standard deviation of 160 km . Lack wants to replace his shoes when 25% of people replace their shoes. At what distance is this?

1. Convert 25% to a decimal.

$$
25 \%=0.25
$$

2. Find the z-score closest to 0.25 in your table.

$$
z=-0.675
$$

3. Substitute this value into your z -score formula. Solve for x .

$$
\begin{aligned}
z & =\frac{x-M}{\theta} \\
(160)-0.675 & =\frac{x-640}{160}(160) \\
+640-108 & =x-640+640 \\
532 & =x
\end{aligned}
$$

Back should replace h is shoes after 532 km ,

$$
\text { P.127 } 1-6.8+1-7 \text { (handout) }
$$

