7.4 Notes

Tuesday, May 12, $20 \quad$ 9:15 AM

Section 7.4 - Factored Form of a Quadratic

- Factored Form
- $y=a(x-r)(x-s)$
- $\mathrm{x}=\mathrm{r}$ and $\mathrm{x}=\mathrm{s}$ are the zeros.
- Linear equation for the axis of symmetry: $x=\frac{r+s}{2}$
- Y -intercept, c , is $c=a \cdot r \cdot s$
- Remember it because you can "see" it's "butt"
- This is good because you can graph it because you can see the zero
- You can draw the parabola using the x-intercepts and another poin parabola.
- If there are no zeros for the function, you can't write it in factored
- If it only has one x -intercept, you can write the equation as $y=a$ (

Examples for 7.4

1. Write an equation in factored form for the graph. (Hint: $a=1$)

$$
(1,0) \&(-2,0) y=a(x-r)(x-5)
$$

$$
y=1(x+2)(x-1)
$$

2. Use the following equation for the next questions.

$$
f(x)=x^{2}-3 x-5
$$

a. Write it in factored form. ${ }^{4}=$

$$
f(x)=(x-5)(x+1) \quad a c=-5
$$

$$
\begin{array}{ll}
- & b=-4
\end{array}
$$

$\left\{\begin{array}{l}x=\frac{r+s}{2}=\frac{5+(-1)}{2}=\frac{4}{2}\end{array}\right.$ c. Determine the axis of symmetry. \qquad $x=2$
b. Determine the x-intercepts. $*$ change,

\rightarrow

$$
\begin{aligned}
& (-1)(5) \\
& (-5)(1)=
\end{aligned}
$$

gr>
for negatives $>$
d. Determine the y-intercept

$$
\begin{aligned}
& c=\operatorname{ars} \\
& c=(1)(5)(-1)
\end{aligned}
$$

