7.6 Notes

Tuesday, May 12,20 12:38 PM

Section 7.6 - Vertex Form

- Vertex Form
- $y=a(x-h)^{2}+k$
- Vertex: (h, k)
- Axis of Symmetry: $\mathrm{x}=\mathrm{h}$
- Parabola opens up when $a>0$. The minimum value of the
- Parabola down up when $a<0$. The maximum value of the
- Can tell you if there are one, two, or no zeros.
- Two Zeros: the graph has a positive value or 0 for t value for k.
- One Zero: the graph has no value for k and h is 0 .
- No Zeros: the graph has a negative value for h and k.
- Benefits: you sketch a graph more easily from this form.
- Drawbacks: looks outlandishly hard. (But it $/ \mathrm{sn}$ ' t , so this doesn't act

7.6 Examples

1. Sketch the following function: $f(x)=2(x-3)^{2}-4$.

$$
\text { Vertex: }(3,-4)
$$

$$
f(0)=2(0-3)^{2}-4
$$

$$
=2(-3)^{2}-4
$$

$$
=18-4
$$

$$
=14
$$

$$
(0,14)
$$

$$
A \cdot S \Rightarrow x=3
$$

7.6 Continued

Tuesday, May 12,20 12:38 PM
3. A soccer ball is kicked from the ground. After 2 seconds, the ball reaches its maxim 20 m . It lands on the ground after 4 seconds.
a. Determine the quadratic function that models the height of the kick.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& h=a(x-t)^{2}+h \rightarrow y \text {-intercupt/4cvalue" } \\
& h=a(x-2)^{2}+20 \quad h=-5(x-2)^{2}+20 \\
& 0=a(4-2)^{2}+20 \quad \\
& 0=a(4)+20 \\
& -20=4 a
\end{aligned}
$$

b. Determine any restrictions on the domain and range for this problem.

$$
\begin{aligned}
& \{t \mid t \geq 0, t \in \mathbb{R}\} \\
& \{h \mid \geq 0, h \in \mathbb{R}\}
\end{aligned}
$$

c. What was the height of the ball at 1 second?

$$
\begin{aligned}
& h=-5(1)-2)^{2}+20 \\
& h z-5(-1)^{2}+20 \\
& h=-5(1)+20 \\
& h=-5+20
\end{aligned} \quad \rightarrow h=15 \begin{aligned}
& \text { * The he } \\
& \text { the ba } \\
& 15 \mathrm{um} 0
\end{aligned}
$$

d. When is the ball at the same height on the way down?
option 1: Solve for x (factorin gt stuff)
Option 2: Line of sym (aka the leas

π 个
1 sec 15 m
$2+1=3$

