7.7 Notes

Section 7.7 - Solving Quadratic Equations Using the Quadratic Formula

- Solving Using the Quadratic Formula
- You can use the quadratic formula to solve any equation.
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- To do this, set your equation equal to zero, then sub into the equation.
- Inadmissible solution
- A root of a quadratic equation that doesn't actually lead to a solution that works in the original equation.
- Always sub into your original equation to find this buggers.
- If $b^{2}-4 a c$ is negative, you wont actually get an answer.
- If $b^{2}-4 a c$ is a perfect square, you can factor it to get your answer.

7.7 Examples

1. Solve the following equation: $6 x^{2}-7 y=7 x$.

$$
\begin{array}{ll}
6 x^{2}-7 x-3=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \begin{array}{ll}
x=\frac{7 \pm \sqrt{49+72}}{12} \\
x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(6)(-3)}}{2(6)}
\end{array}
\end{array} \begin{array}{ll}
x=\frac{7 \pm \sqrt{121}}{12} & x=\frac{11}{12} \\
x=\frac{7 \pm 11}{12} & x=\frac{7-11}{12} \\
x=\frac{3}{2} & x+1.5 \\
x=\frac{-1}{12}
\end{array} \quad \begin{array}{ll}
\text { or }
\end{array}
$$

2. A store rents an average of 750 video games each month for $\$ 4.50$ each. The owners of the store want to raise the rates to increase the revenue to $\$ 7000$ per month. However, for every $\$ 1$ they increase, they know they rent 30 less games per month. The following relates the price, p, and revenue, r.

$$
(4.5+p)(750-30 p)=r
$$

Can the owners increase the rental rate enough to generate revenue of $\$ 7000$?

$$
\begin{array}{ll}
(4.5+p)(750-30 p)=7000 & x=\frac{-(-123) \pm \sqrt{(-123)^{2}-4(6)(720)}}{3375+750 p-135 p-30 p^{2}=7000} \\
\frac{-30 p^{2}+\frac{615 p-3625}{-5}=\frac{0}{-5}}{-5} & x=\frac{123 \pm \sqrt{-2271}}{12} \\
6 p^{2}-123 p+725=0 & \text { is } \\
\sqrt{-2271} \text { is impossible } \therefore \text { no solution. }
\end{array}
$$

$$
\text { It is impossible to generate } \$ 7000 \text { of revenue. }
$$

$$
\begin{aligned}
& \text { t is impossible le generate } \$ 1000 \text { of rene } \\
& p .20+\operatorname{ti} 2-5,7<(a, c) \text { on my }
\end{aligned}
$$

