Section 2.0 Review
Monday, February 22, 2016
9:03 AM

Section 2.0 Review
Define:

- Parallel Lines
- Lines never meet
- Quadrilateral

any four- sided figure - must closed

- Kite

- Rhombus

all sides are equal angles are not 90'
- Parallelogram!

a rectangle someone lescked
- Acute Triangle
all angles are less than
90°

- Obtuse Triangle
one angle is greater than 90°.

- Equilateral Triangle
all sides are equal. All angles are 60°.

Chapter 2 - Angles Page 1
all sides are equal. All angles are 60°.

- Scalene Triangle No sides are equal
- Isosceles Triangle

Two sides are equal Tho angles are equal

- Supplementary Angles (180)

$$
a+b=180^{\circ}
$$

- Complementary Angles (90)

$$
a+b=90^{\circ}
$$

Similar Triangles two triangles that have tho same angle measures.

Congruent Triangles
 "equal"
same length + angles
Vertically Opposite Angles

$$
A \equiv B
$$

"congruent"

From <https://rcsdtech-my.sharepoint.com/personal/s thibeault rcsd ca/Documents/3\%20\%20Foundations\%2020/Unit\%202\%20-\% 20Angles/Section\%202.0\%20Review\%20.docx>

$$
\begin{aligned}
& \angle a=\angle c \\
& \angle b=\angle d
\end{aligned}
$$

Chapter 2 - Angles Page 2

Calculate $<a,<b,<c$.
$\angle b=65$ vertically opp.

$$
65+\angle c=180^{\circ}
$$

$$
\angle C=115^{\circ} \text { supp angles }
$$

$\angle a=115^{\circ}$ vert. opp.
P. $38 \# 1-6$ all.

Section 2.1-2.2
Tuesday, February 23, 2016 11:16 AM

Geometric Properties Review
Angle Properties

Parallel lines and Transversals

A transversal is a line that intersects two or more other lines at distinct points.

Parallel lines are lines with the same slope/dicetion but different planes. Parallel lines will
never meet or each other. R ane

If two parallel lines are cut by a transversal, eight angles are created.

Interior Angles lie inside the parallel lines.

$$
c=e
$$

$d=f$

Exterior angles lie outside the parallel lines.

$a=9$
$b=h$

Corresponding angles are one interior angle and one exterior angle that are non-adjacent and on the same side of the transversal.
"F"

	$b=f$
	$a=e$

If two parallee lines are cut by a transversal, then corresponding angles are equal
***Likewise, if two lines are cut by a transversal and the corresponding angles are equal, then the lines are
parallel.*** parallel.***
Example 1: \quad Find the indicated angle:

Ch. 2 - Properties of Angles and Triangles
$2.1 \& 2.2$ - Angles and Parallel Lines
Parallel Lines/"

$$
\begin{aligned}
f & =68^{\circ} \quad \text { V. Opp. } \\
d & =68^{\circ} \quad \text { Corr. Angks } \\
b & =68^{\circ} \quad \text { V. opp. / Att. Ext. Angles } \\
180^{\circ}-68^{\circ}=112^{\circ} \quad g & =112^{\circ} \text { supp angles. } \\
e & =112^{\circ} \text { V.Opp. } \\
a & =112^{\circ} \text { corr. angles } \\
c & =112^{\circ} \text { V.Ipp. / alt. int. angles }
\end{aligned}
$$

$$
\text { Ex. } 2
$$

$a=106^{\circ}$
$b=66^{\circ}$
Are they parallel?

1) Assume they are paraliel.
2) $180^{\circ}-106^{\circ}=74^{\circ}$
3) $\angle b=\angle c \quad b / c$ corresponding angle.
$66^{\circ} \neq 74^{\circ}$
False. They are not parakl.

4) $\angle b=\angle c \quad b / c$ corresponding angte

$$
66^{\circ} \neq 74^{\circ}
$$

False. They are not parakel.

2.2- Angles formed by Parallel Lines

- The first column contains statements we believe are true

The second column contains the reason for the statement (how do we know it's true?)
These statements and justifications involve known facts about:
corresponding angles (they are equal) \mp

- vertically opposite angles (they are equal) \mathcal{X}
supplementary angles (together they form a straight angle)
- We get to substitute one angle for another once we know they are eq

Prove the following conjectures:

1) "When parallel lines are intersected by a transversal, the alternate interior angles are equal." Create a diagram:

What are you trying to prove? $\quad \alpha=\beta$

$$
\begin{array}{ll}
\quad \frac{\text { Statement }}{\gamma} & \\
\begin{array}{ll}
\text { Reason } \\
\gamma=\beta & \text { corresponding angles } \\
\therefore \alpha=\beta & \text { vertically opposite } \\
\therefore & \text { transitive proper } Y \\
& \\
& \\
& \square E D .
\end{array} \\
&
\end{array}
$$

2) "When parallel lines are intersected by a transversal, the same-side interior angles are supplementary." Create a diagram:

What are you trying to prove? $a+b=180^{\circ}$
you trying to $a+b=180^{\circ}$
Reason
Supplemen tany

$$
\begin{array}{ll}
\text { Statement } & \frac{\text { Reason }}{b+c=180^{\circ}} \\
\begin{array}{ll}
\text { Supplemen tory } \\
a=c & \text { corre sponding angles }
\end{array}
\end{array}
$$

\therefore D $a=180^{\circ}$ transitive property
\therefore or $a=180$ trans, tive property \square
3) "When parallel lines are intersected by a transversal, the alternate exterior angles are equal."
Create a diagram:

What are you trying to prove?	$a=b$
Statement	Reason
$b=c$	corresponding angles
$a=c$	vertically opposite
$\therefore \therefore a=b$	transitive properity

Results
Now that we have proved these statements are true, we can use them in other proofs!
$\therefore a=b \quad$ transitive property

Results
Now that we have proved these statements are true, we can use them in other proofs.

1. Corresponding angles are equal
2. Alternate interior angles are equal
3. Alternate exterior angles are equal
4 Same side interior angles are supplementary
-5. Vertically opposite angles are equal

Examples

Chapter 2-Angles Page 7

Section 2.3

Thursday, February 25, 2016

2.3- Angle Properties in Triangles

Key Terms:

1) Exterior angle (of a triangle, or other polygon):

-

The angle that is formed by a side of a triangle, or other polygon, and the extension of an adjacent side
2) Non-adjacent interior angles (in a triangle):

- The two angles of a triangle that do not have the same vertex as an exterior angle

Triangle Property \#1:

The sum of the measure of the interior angles of any triangles is 180°.

$$
a+b+c=180^{\circ}
$$

Triangle Property \#2:

The measure of any exterior angle of a triangle is proven to be equal to the sum of the measure of the two nonadjacent interior angles.

$$
a+b=x
$$

Examples:

Determine the angle measures in the following triangle:

$$
\begin{aligned}
& 135-60=75^{\circ} \\
& 180-135^{\circ}=45^{\circ}
\end{aligned}
$$

Pro ce Find the angles.

Prove $A B \| C D$

Prove $A B \| C D$.

From <https://rcsdtech-my.sharepoint.com/personal/s thibeault rcsd ca/Documents/3\%20\%20Foundations\%2020/Unit\%202\%20-\% 20Angles/notes2.3.docx>

- The sum of the angles in a triangle is 180°.

We can use our knowledge of parallel lines to prove this theorem.
Example 1. Given $\triangle \mathrm{ABC}$, prove $<1+<2+<3=180^{\circ}$.

$$
\angle 2+\angle 1+\angle 3=180^{\circ} .
$$

(1) Draw $/ 1$ lines abase+ top (2) look for alt. int. angles.
(3) Add supp. angles.
$\therefore \angle 1+\angle 2+\angle 3=180^{\circ}$ be commutition property.
Example 2. Determine the measures of <1 and <2.

$$
\begin{aligned}
180-140^{\circ} & =a \\
40^{\circ} & =a
\end{aligned}
$$

$$
40^{\circ}=a
$$

$$
\begin{gathered}
180-70-40=1 \\
70^{\circ}=1
\end{gathered}
$$

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Example 3. Prove $<\mathrm{e}=<\mathrm{a}+<\mathrm{b}$.

Example 4. Determine $<1,<2,<3$, and <4.

$$
\begin{gathered}
180-60-65=\angle 1 \\
258 \\
\angle 2=65^{\circ} \quad v .0 p p \\
25^{\circ}+\angle 3=55^{\circ} \text { alt. inst. } \\
\angle 3=30^{\circ} \\
180-90-30=60^{\circ}
\end{gathered}
$$

$$
\times \quad 258
$$

$$
\begin{aligned}
& 180-90-30=60^{\circ} \\
& 180-60^{\circ}=120^{\circ}
\end{aligned}
$$

From <https://rcsdtech-my.sharepoint.com/personal/s thibeault rcsd ca/Documents/3\%20\%20Foundations\%2020/Unit\%202\%20-\% 20Angles/notes2.3part2.docx>

Section 2.4

Friday, February 26, 2016

2.4- Angle Properties in Polygons

Key Terms:

1) Convex polygon: a polygon in which each interior angle measure less than 180°.

Example:

Non- example:

2) Regular polygon: a regular polygon for which all sides are equal length, and all interior angles have the same measure

Some regular polygons are so special, they have their own name:

a regular triangle is called an equilateral triangle

a regular quadrilateral is called a square
4

Other regular polygons are simply referred to by the name dictated by the number of sides, with the word "regular" in front:

a regular pentagon $($ penta $=5$ sided $)$

a regular hexagon (hexa $=6$ sided)

a regular octagon $($ oct $=8$ sided $)$

Goal: Use the fact that we know the interior angles -of a triangle add up to 180° to helpus come up with a formula that will calculate the interior angle sum for ANY convex polygon with ANY number of sides (n).

$$
S=180(n-2)
$$

$$
\begin{aligned}
& n=\# \text { sides } \\
& s=\text { sum of } \mathrm{Lu}
\end{aligned}
$$

Polygon Formula \#1:
The interior angle sum for any convex polygon:

$$
\begin{aligned}
& \text { IAS }=(n-2) 180^{\circ} \\
& (n=\text { number of sides })
\end{aligned}
$$

Polygon formula \#2:

The exterior angle sum (EAS) tor any convex polygon is always 360°, regardless of how many sides it has!

Polygon formula \#4
(regular polygons only)
Each exterior angle (EEA) for regular polygons can be found by dividing the exterior angle sum (always 360°) by the number of angles in the polygon) (The number of angles is the same as the number of sides)

$$
\begin{aligned}
& \text { Hepta }=7 \text { sides } \\
& \rightarrow S=180(n-2) \\
& S=180(7-2) \\
& S=180(5) \\
& s=900^{\circ}
\end{aligned}
$$

From <https://rcsdtech-my.sharepoint.com/personal/s thibeault rcsd ca/Documents/3\%20\%20Foundations\%2020/Unit\%202\%20-\% 20Angles/notes2.4.docx>
2.4 Con't

Let's look at how big each interior angle is in a regular polygon:
Side:

$$
\begin{aligned}
a & =\frac{180(5-2)}{5} \\
& =\frac{180(3)}{5}=108^{\circ} \\
a & =\frac{180(4-2)}{4} \\
a & =90^{\circ}
\end{aligned}
$$

$$
\begin{array}{rl}
X_{1}+a=\frac{180(4)}{b} & =120^{\circ} \\
7 & a=\frac{180(7-2)}{7} \\
& a=\frac{180(5)}{7}=128,6^{\circ}
\end{array}
$$

\# of angles:
Measure of each:

Exterior Angles: always look at them from one direction, clockwise or counter-clockwise.

Clockwise

Counter-Clockwise

Each interior angle has an exterior angle that forms a straight line making 180°. To find the exterior sum, we can add up aft

$$
72 \times 5=360^{\circ}
$$

Example.

* For shapes to tesselate, the exterior angles MUST add up to 360°.

A convex polygon has an exterior angle sum of: 360°

Theorem: The sum of the exterior angles of any convex polygon is 360°.
Show that each exterior angle of a regular polygon is

1. Draw an Octagon (8 sided), hexagon (6 sided), and a pentagon (5 sided). Then add on the exterior angles in each polygon.

Octagon	Hexagon	Pentagon

2. Find the sums of the interior angles for each

	Octagon	Hexagon
	$=180(n-2)$	
	$=180(8-2)$	
	$=180(6)$	
	$=1080^{\circ}$	

3. Find the measure of the interior angles for each

	Octagon \boldsymbol{a} $=\frac{180(n-2)}{n}$ $=\frac{1080}{8}$ $=135^{\circ}$	Pentagon

4. Find the measure of the exterior angles for each

Octagon	Hexagon		
(1) E	$=\frac{360}{8}$		
	$=45^{\circ}$		
(2) E	$=180-135=45^{\circ}$		

5. Find the answer to 360° divided by the number of sides for each polygon

Octagon	Hexagon	Pentagon
450		

6. Compare the results in step 5 to the results in step 4 7. List your observations of the results from step 6

They are

the same.

A convex polygon has all interior angles less than

 180 .A concave polygon has at least one interior angle greater than 180°.

Example 1. Determine the measure of each interior angle of a regular 17 -sided polygon.

$$
a=\frac{180(n-2)}{n}=\frac{180(17-2)}{17}=\frac{180(15)}{17}=158.8^{\circ}
$$

Exterior and Interior Angles:
(1) $E=\frac{360}{17}=21.2^{\circ}$
(2) $E=180^{-158.8}=21.2^{\circ}$

From <https://rcsdtech-my.sharepoint.com/personal/s thibeault rcsd ca/Documents/3\%20\%20Foundations\%2020/Unit\%
$\underline{202 \% 20-\% 20 \text { Angles } / 2.4 \% 20 h a n d o u t . d o c x>}$
p. 50
\#1-8, 11

Quizzes

2.1-2.2 Quiz

NAME: \qquad Date: \qquad

1. Determine the measure of all unknown angles. Be sure to label them and show your work.

2. Are $B D$ and $F E$ parallel? Explain how you know.

$$
\begin{aligned}
& 125^{\circ}+37^{\circ}=162^{\circ} \\
& \therefore N \sigma+/ .
\end{aligned}
$$

3. Prove: $T V \| Y Z$

Because $\angle T U Y$ is equal to $\angle U Y Z$
(a ilk, int), TV//Yz.

2

$$
\begin{aligned}
\angle C & =\angle 2 \\
\angle 2 & =\angle D \\
\therefore \angle C & =D
\end{aligned}
$$

From <Quiz 2.1-2.2.docx>

Math 20 Ch 2 Quiz.docx
Thursday, March 3, 2016 9:40 AM

Math 20 Ch 2 Quiz

Multiple Choice

Identify the choice that best completes the statement or answers the question.
B 1. Which pairs of angles are equal in this diagram?

$$
\begin{aligned}
& \text { (b) } a=b, c=d \text {, and } e=f \\
& a=e, c=g \text {, and } b=f \\
& a=c, e=g \text {, and } f=h \\
& \text { \&. } a=e, b=d \text {, and } c=g
\end{aligned}
$$

D 2. Which pairs of angles are equal in this diagram?

द. $b=e, c=h$, and $d=g$
૪. $b=a, c=e$, and $d=f$
d $b=c, e=g$, and $f=h$
d. $b=f, c=g$, and $d=h$

B 3. In which diagram(s) is $A B$ parallel to $C D$?
1.

2.

a. Choice 1 only
(b) Choice 2 only
c. Choice 1 and Choice 2
d. Neither Choice 1 nor Choice 2

Page 2

Thursday, March 3, 2016 9:40 AM

C 4. In which diagram(s) is $A B$ parallel to $C D$?
1.

2.

a. Choice 1 only
b. Choice 2 only
c. Choice 1 and Choice 2
d. Neither Choice 1 nor Choice 2

A 5. Which statement about the angles in this diagram is false?

(a) $\angle b=50^{\circ}$
b. $\angle c=50^{\circ}$
c. $\angle e=130^{\circ}$
d. $\angle f=62^{\circ}$
B 6. Which statement about the angles in this diagram is false?

a. $\angle a+\angle c=180^{\circ}$
(b) $\angle e+\angle d=180^{\circ}$
c. $\angle d+\angle b=124^{\circ}$
d. $180^{\circ}-\angle f=118^{\circ}$

Page 3

Thursday, March 3, 2016 9:40 AM

D 7. Which statement about the angles in this diagram is false?

$$
\begin{aligned}
& \angle e=\angle f \\
& \angle a=\angle b \\
& \angle d=\angle c \\
& \angle f=\angle a
\end{aligned}
$$

A 8. Which angle property proves $\angle P Y D=90^{\circ}$?

(a) corresponding angles F
b. alternate interior angles Z
c. alternate exterior angles
d. supplementary angles \qquad
A
9. Which angle property proves $\angle D A B=120^{\circ}$?

(2) vertically opposite angles X
b. alternate exterior angles
c. alternate interior angles
d. corresponding angles

Page 4

Thursday, March 3, 2016 9:40 AM
\qquad 10. Which angle property proves $\angle B E D=73^{\circ}$?

a. alternate interior angles
b. vertically opposite angles
c. corresponding angles
d. alternate exterior angles
11. In which diagrams are two lines parallel?
1.

2.

a. Choices 1, 2, and 3
b. Choice 1 and Choice 3
c. Choice 2 and Choice 3
d. Choice 1 only
12. In which diagrams are two lines parallel?
1.

2.

3.

a. Choice 2 and Choice 3
b. Choice 1 only
c. Choice 1 and Choice 3
d. Choices 1,2 , and 3
13. Which are the correct measures of the indicated angles?

a. $\angle w=146^{\circ}, \angle x=44^{\circ}, \angle y=146^{\circ}$
b. $\angle w=134^{\circ}, \angle x=46^{\circ}, \angle y=46^{\circ}$
c. $\angle w=136, \angle x=44^{\circ}, \angle y=136^{\circ}$
d. $\angle w=116^{\circ}, \angle x=64^{\circ}, \angle y=64^{\circ}$

Page 5

Thursday, March 3, 2016 9:40 AM
14. Which are the correct measures for $\angle Y X Z$ and $\angle X Z Y$?

a. $\angle Y X Z=63^{\circ}, \angle X Z Y=91^{\circ}$
b. $\angle Y X Z=53^{\circ}, \angle X Z Y=91^{\circ}$
c. $\angle Y X Z=63^{\circ}, \angle X Z Y=81^{\circ}$
d. $\angle Y X Z=53^{\circ}, \angle X Z Y=81^{\circ}$
15. Which are the correct measures for $\angle Y X Z$ and $\angle X Z Y$?

a. $\angle Y X Z=52^{\circ}, \angle X Z Y=77^{\circ}$
b. $\angle Y X Z=52^{\circ}, \angle X Z Y=87^{\circ}$
c. $\angle Y X Z=62^{\circ}, \angle X Z Y=77^{\circ}$
d. $\angle Y X Z=62^{\circ}, \angle X Z Y=87^{\circ}$
16. Which are the correct measures for $\angle D C E$ and $\angle C A B$?

a. $\angle D C E=47^{\circ}, \angle C A B=109^{\circ}$
b. $\angle D C E=37^{\circ}, \angle C A B=119^{\circ}$
c. $\angle D C E=13^{\circ}, \angle C A B=143^{\circ}$
d. $\angle D C E=31^{\circ}, \angle C A B=134^{\circ}$

Page 6

Thursday, March 3, 2016 9:40 AM
\qquad 17. Which are the correct measures of the interior angles of $\triangle C D E$?

a. $\angle D C E=46^{\circ}, \angle C D E=101^{\circ}$, and $\angle C E D=33^{\circ}$
b. $\angle D C E=32^{\circ}, \angle C D E=83^{\circ}$, and $\angle C E D=65^{\circ}$
c. $\angle D C E=76^{\circ}, \angle C D E=91^{\circ}$, and $\angle C E D=13^{\circ}$
d. $\angle D C E=56^{\circ}, \angle C D E=101^{\circ}$, and $\angle C E D=23^{\circ}$
18. Which are the correct measures of the interior angles of $\triangle C D E$?

a. $\angle D C E=92^{\circ}, \angle C D E=49^{\circ}$, and $\angle C E D=39^{\circ}$
b. $\angle D C E=52^{\circ}, \angle C D E=69^{\circ}$, and $\angle C E D=59^{\circ}$
c. $\angle D C E=62^{\circ}, \angle C D E=49^{\circ}$, and $\angle C E D=69^{\circ}$
d. $\angle D C E=72^{\circ}, \angle C D E=59^{\circ}$, and $\angle C E D=49^{\circ}$
19. Which are the correct measures for $\angle W X Z, \angle U Z Y$, and $\angle V Y X$?

a. $\angle W X Z=147^{\circ}, \angle U Z Y=118^{\circ}$, and $\angle V Y X=95^{\circ}$
b. $\angle W X Z=147^{\circ}, \angle U Z Y=108^{\circ}$, and $\angle V Y X=85^{\circ}$
c. $\angle W X Z=157^{\circ}, \angle U Z Y=118^{\circ}$, and $\angle V Y X=95^{\circ}$
d. $\angle W X Z=157^{\circ}, \angle U Z Y=108^{\circ}$, and $\angle V Y X=85^{\circ}$

Short Answer

20. Determine the measure of $\angle A B F$.

Page 7

Thursday, March 3, 2016 9:40 AM
21. Determine the measure of $\angle B E F$.

22. Determine the measure of $\angle D B F$.

23. Determine the measure of $\angle B D E$.

24. Determine the measure of $\angle P Q T$.

Page 8

Thursday, March 3, 2016 9:40 AM
25. Determine the measure of $\angle T R S$.

26. Determine the measure of $\angle N M O$.

$$
\begin{gathered}
75-22=53^{\circ} \\
180-45-53=82^{\circ}
\end{gathered}
$$

27. Determine the unknown angles.

Page 9

Thursday, March 3, 2016 9:40 AM

Problem
28. Are $B D$ and $F E$ parallel? Explain how you know.

No.

$$
\begin{aligned}
& 125+37=162 \neq 180^{\circ} \\
& \text { NOT } \mu 1
\end{aligned}
$$

29. Is quadrilateral $M A T H$ a parallelogram? Explain.

$$
45+64=109^{\circ}
$$

$$
57+38=95^{\circ}
$$

Page 10
Thursday, March 3, 2016 9:40 AM

Math 20 Ch 2 Quiz

Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 2.1

OBJ: 1.1 Generalize, using inductive reasoning, the relationships between pairs of angles formed by transversals and parallel lines, with or without technology. | 1.5 Verify, with examples, that if lines are not parallel the angle properties do not apply. TOP: Parallel lines
KEY: parallel lines| transversals
2. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 2.1

OBJ: 1.1 Generalize, using inductive reasoning, the relationships between pairs of angles formed by transversals and parallel lines, with or without technology. | 1.5 Verify, with examples, that if lines are not parallel the angle properties do not apply. TOP: Parallel lines
KEY: parallel lines| transversals
3. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 2.1

OBJ: 1.1 Generalize, using inductive reasoning, the relationships between pairs of angles formed by transversals and parallel lines, with or without technology. | 1.5 Verify, with examples, that if lines are not parallel the angle properties do not apply. TOP: Parallel lines
KEY: parallel lines| transversals
4. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 2.1

OBJ: 1.1 Generalize, using inductive reasoning, the relationships between pairs of angles formed by transversals and parallel lines, with or without technology. | 1.5 Verify, with examples, that if lines are not parallel the angle properties do not apply. TOP: Parallel lines
KEY: parallel lines| transversals
5. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
6. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
7. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4

Page 11
Thursday, March 3, 2016 9:40 AM

Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
8. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
9. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
10. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
11. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
12. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
13. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 2.2

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines,

Page 12
Thursday, March 3, 2016 9:40 AM
including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
14. ANS: C PTS: 1 DIF: Grade 11 REF: Lesson 2.3

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles
KEY: angles| triangles
15. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.3

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles KEY: angles| triangles
16. ANS: B PTS: 1 DIF: Grade 11 REF: Lesson 2.3

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles KEY: angles| triangles
17. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 2.3

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles KEY: angles | triangles
18. ANS: D PTS: 1 DIF: Grade 11 REF: Lesson 2.3 OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles KEY: angles| triangles
19. ANS: A PTS: 1 DIF: Grade 11 REF: Lesson 2.3

OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles
KEY: angles| triangles

SHORT ANSWER

20. ANS:
$\angle A B F=66^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. |2.3 Solve a contextual problem that involves angles or triangles. |2.4

Page 13
Thursday, March 3, 2016 9:40 AM

Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
21. ANS:
$\angle B E F=72^{\circ}$

PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
22. ANS:
$\angle D B F=114^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
23. ANS:
$\angle B D E=66^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
24. ANS:
$\angle a=18^{\circ}, \angle b=54^{\circ}, \angle c=27^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.

Page 14
Thursday, March 3, 2016 9:40 AM

TOP: Angles formed by parallel lines
25. ANS:
$\angle a=15^{\circ}, \angle b=30^{\circ}, \angle c=10^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. $\mid 2.5$ Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
26. ANS:
$\angle P Q T=36^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
27. ANS:
$\angle T R S=41^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal.
TOP: Angles formed by parallel lines KEY: parallel lines| transversals| angles
28. ANS:
$\angle N M O=82^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.3
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles
KEY: angles| triangles
29. ANS:
$\angle A D E=40^{\circ}, \angle E A D=61^{\circ}, \angle A B C=61^{\circ}, \angle B A D=119^{\circ}, \angle C D A=140^{\circ}$
PTS: 1 DIF: Grade 11 REF: Lesson 2.3
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines,

Page 15
Thursday, March 3, 2016 9:40 AM
including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning.

TOP: Angles in triangles
KEY: angles| triangles

PROBLEM

30. ANS:
$\angle A B C=\angle F B D=125^{\circ}$ Vertically opposite angles
$\angle E F B+\angle F B D=162^{\circ}$
So , $B D$ is not parallel to $F E$ because the interior angles on the same side of the transversal are not supplementary.

PTS: 1 DIF: Grade 11 REF: Lesson 2.2
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. | 1.4 Identify and correct errors in a given proof of a property involving angles. | 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. | 2.2 Identify and correct errors in a given solution to a problem that involves the measures of angles. | 2.3 Solve a contextual problem that involves angles or triangles. | 2.4 Construct parallel lines, using only a compass or a protractor, and explain the strategy used. | 2.5 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. TOP: Angles formed by parallel lines

KEY: parallel lines| transversals| angles
31. ANS:

It is not a parallelogram. $\angle A M T$ does not equal $\angle M T H$, so alternate interior angles are not equal.
PTS: 1 DIF: Grade 11 REF: Lesson 2.3
OBJ: 1.2 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle.| 2.1 Determine the measures of angles in a diagram that involves parallel lines, angles and triangles, and justify the reasoning. TOP: Angles in triangles KEY: angles| triangles

